

EPIZONE: Highlights from five years of international collaboration on surveillance and epidemiology

Claes Enøe

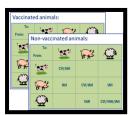
Leader Theme 6: Surveillance and Epidemiology

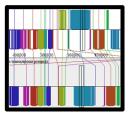
DTU Vet

National Veterinary Institute

Outline

- Some highlights from 5 years of scientific work within Epizone
- Some highlights from 5 years of networking in the Epizone Universe
- Some examples of major outcomes
- My personal and positive experiences


The work packages


• 6.1 Surveillance and epidemiology of emerging viral diseases in aquaculture

 6.2 Molecular epidemiology and surveillance of avian influenza (AI) and avian paramyxovirus (APMV)

• 6.3 Experimental epidemiology

6.4 Molecular epidemiology

The internal calls

• 6.5 Harmonisation of Wildlife Surveillance for Epizootic Animal Diseases (WILDSURV)

• 6.6 Epidemiology and surveillance of bluetongue virus serotype 8 in Europe

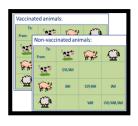
• 6.7 Establishing the transmission dynamics of bluetongue serotype 8 and entomological aspects in Northern Europe (BT-DYN-VECT)

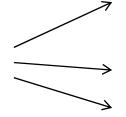
• 6.8 Comparative dynamics of BVDV-1 and the newly detected bovine pestivirus (BVDV-3)

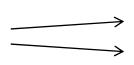
First impression – bag of mixed candies

Epidemiology and molecular epidemiology

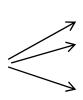
Some scientific highlights




- High number of viral haemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV) isolates sequenced and used as tool for molecular tracing of disease outbreaks
- For the first time serological methods in aquaculture validated and standardised

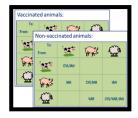

- 550 AI and 116 APMV sequences submitted to public databases such as GISAID
- Novel genotypes of APMV isolates from Africa

- Foot-and-mouth disease virus (FMDV) use of 4 data sources to estimate transmission parameters both withinand between species and non- and vaccinated populations
 - Swine vesicular disease virus (SVDV) estimation of transmission parameters from experiments
- SVDV spatial analysis of SVDV outbreaks in Lombardia

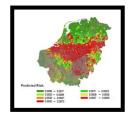


- Shared database with data from 5 member states
- Spatiotemporal model for BT riskfactors and riskmaps

Some networking highlights



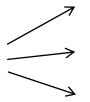
- Strengthen collaboration among fish people
- Opening the view, networking and collaboration with the "Terrestrials"
- Geographical information system (GIS) and worldwide questionnaire used to map diseases and gain knowledge

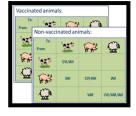


Sharing of protocols for AI and APMV genome sequencing

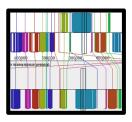
FMDV - course 'Design and analysis of transmission experiments' Nov 2009. 25 participants attended the course, 23 of whom were from EPIZONE institutes

Contributions from 10 member states


Some major outcomes from WPs



- Fish pathogens database <u>www.fishpathogens.eu</u>
- Koi herpes virus (KHV) situation assessed World wide standardised diagnostic methods established



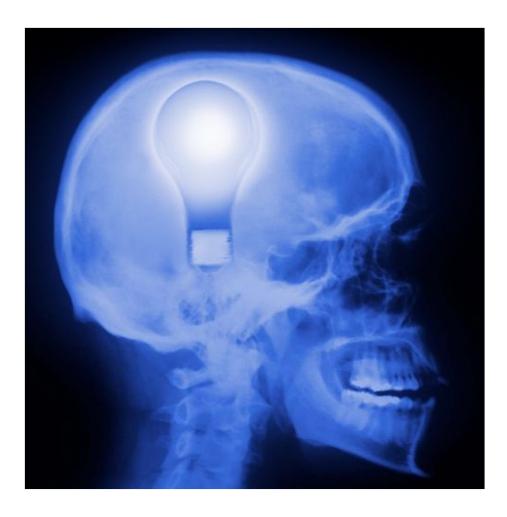
- 11 peer-reviewed publications and 23 meeting communications on AI
- 6 peer-reviewed publications and 3 meeting communications on APMV
- Review article with recommendations for EU AI and NDV surveillance

- Major input to simulation modelling
- 5 papers published, 5 in preparation. ## oral and poster presentations

A generic database for harbouring and sharing of Epizone data developed in cooperation with Hannover Veterinary School

Epizone data – a nice stamp collection

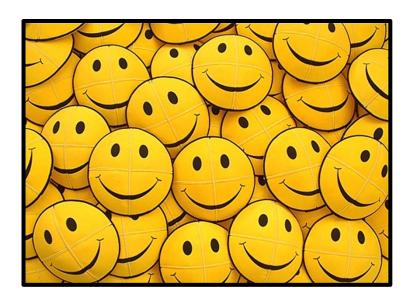
Collected and put into order

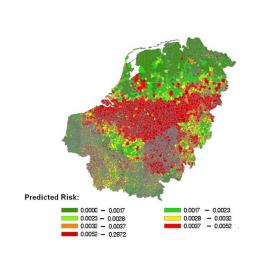


And entered into databases

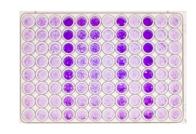
So what can we do with these data?

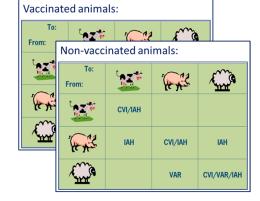
By 'we' I mean epidemiologists


Excellent question and a future challenge


Some personal and positive experiences

- Provided an excellent platform for networking which is very important for data dependent research as epidemiology
- Emphazised the need to share data across member states and even further
- Gave me insight into molecular epidemiology and the need to do something about the continousoly increasing amount of biological data




Essence

"WE HAVE SHOWED
HOW IMPORTANT IT IS
TO COLLECT DATA IN
A STANDARDISED WAY
AND GENERATE BASIC
BIOLOGICAL DATA, AND
WE HAVE REALISED THE
POWER OF SHARING DATA
AND INFORMATION ACROSS
MEMBER STATES."
CLAES ENØE, THEME LEADER

08 EPIZONE: FOR BETTER CONTROL OF ANIMAL DISEASES