Rift Valley fever: Unanswered questions and unmet needs

Jeroen Kortekaas, 11th EPIZONE meeting September 20th, Paris, France

Wageningen Bioveterinary Research, Lelystad

Wageningen Bioveterinary Research, Lelystad

Presentation objectives

Introduction of the Order Bunyavirales

- Rift Valley fever:
 - Susceptible species
 - Molecular virology
 - History
 - Epidemiology
 - Pathology
 - Vaccines

The order Bunyavirales

Largest group of RNA viruses affecting mammals

Nine families:

- Feraviridae
- Fimoviridae
- Jonviridae
- Phasmaviridae
- Tospoviridae
- Nairoviridae
- Peribunyaviridae
- Hantaviridae
- Phenuiviridae

Rift Valley fever: Susceptible species

Biosafety level-3

Laboratory

The RVFV virion

Enveloped virus with icosahedral symmetry (90-110 nm)

Segmented single-strand negative-sense RNA genome

- Large (L), Medium (M), Small (S)
- One serotype
- NSs is the major virulence determinant

Class II fusion proteins (alphaviruses)

RVFV Gc is a class-II fusion protein

Structure of Gn (ectodomain)

The Great Rift Valley

History

- 1930: Virus isolated during outbreak among European-breed sheep in the Rift Valley, Kenya
 - 3500 lambs and 1200 ewes died from acute necrosis of the liver, also cattle and goats affected
 - Mosquito transmission suggested

Robert Daubney

Virus circulation between <1930-1950

First incursion South Africa

First incursion Madagascar

First incursion Egypt

First incursion Mauritania and Senegal

۰.

First incursions Saudi Arabia and Yemen

۰.

Current situation

RVFV in Turkey?

Trop Anim Health Prod DOI 10.1007/s11250-017-1359-8

REGULAR ARTICLES

CrossMark

The first serological evidence for Rift Valley fever infection in the camel, goitered gazelle and Anatolian water buffaloes in Turkey

Sibel Gür¹ · Mehmet Kale² · Nural Erol³ · Orhan Yapici⁴ · Nuri Mamak⁵ · Sibel Yavru⁴

Complete Genome Analysis of 33 Ecologically and Biologically Diverse Rift Valley Fever Virus Strains Reveals Widespread Virus Movement and Low Genetic Diversity due to Recent Common Ancestry[⊽]

Brian H. Bird,^{1,3} Marina L. Khristova,² Pierre E. Rollin,¹ Thomas G. Ksiazek,¹ and Stuart T. Nichol^{1*}

Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases,¹ and Biotechnology Core Facility Branch,² Centers for Disease Control and Prevention, 1600 Clifton Road MS G-14, Atlanta, Georgia 30329, and University of California, Davis, School of Veterinary Medicine, Davis, California 95616³

Widespread virus movement, few reassortment events

RVFV isolated from 30 species, 10 genera

Rift Valley Fever Virus (Family Bunyaviridae, Genus Phlebovirus). Isolations from Diptera Collected during an Inter-Epizootic Period in Kenya

K. J. Linthicum; F. G. Davies; A. Kairo; C. L. Bailey

The Journal of Hygiene, Vol. 95, No. 1. (Aug., 1985), pp. 197-209.

Medical and Veterinary Entomology (2017), doi: 10.1111/mve.12254

Rift Valley fever virus and European mosquitoes: vector competence of *Culex pipiens* and *Stegomyia albopicta* (= *Aedes albopictus*)

M. BRUSTOLIN¹, S. TALAVERA¹, A. NUÑEZ¹, C. SANTAMARÍA¹, R. RIVAS¹, N. PUJOL¹, M. VALLE¹, M. VERDÚN¹, A. BRUN², N. PAGÈS^{1†,} and N. BUSQUETS¹

¹IRTA, Centre de Recerca en Sanitat Animal, (CReSA, IRTA-UAB), Bellaterra, Spain and ²Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria (INIA-CISA), Valdeolmos, Madrid, Spain

Transmission of RVFV from European breed lambs to *Culex pipiens* mosquitoes

Ecology

Bird & McElroy Antiviral Res 2016

Rift Valley fever animal models @WBVR

Mice

Sheep

Cattle

~20% Fatality

Liver: The major target organ

Fatal cases

Mononuclear phagocytic cells

Commercially available RVF vaccines

 Inactivated vaccine: Requires booster and yearly revaccinations

- Smithburn vaccine: Highly effective, but not safe for
 - pregnant animals

Clone 13

- Plaque-purified from a human case
- 70% deletion NSs gene

Bouloy *et al*, 1995-2014

- Shown to be safe in mice, sheep and cattle
- Highly effective in sheep and cattle
- Since 2010, more than 19 million doses used in the field
- Registered in South Africa, Namibia and Botswana

A public-private partnership to protect humans and animals from emerging zoonoses

Clone 13 is neurovirulent in mice after intranasal administration

Mock

In fe c te d

Clone 13

Negative control

Cerebellum

Hippocampus

Cerebral cortex

Clone 13 is safe for lambs

No viremia

No disease

No dissemination

No shedding

No spreading

Fetal malformations and stillbirths after inoculation of an overdose of Clone 13

et al., PLoS Negl Trop Dis. 2016

Next-generation vaccines

- MP-12
- MP-12∆NSm
- ZH501∆NSs-∆NSm (DDvax)
- ChAdOx-1-GnGc
- RVFV-4s

SCIENTIFIC **Reports**

OPEN Chimpanzee Adenovirus Vaccine **Provides Multispecies Protection** against Rift Valley Fever

Received: 23 September 2015 Accepted: 08 January 2016 Published: 05 February 2016 George M. Warimwe^{1,2}, Joseph Gesharisha³, B. Veronica Carr⁴, Simeon Otieno³, Kennedy Otingah³, Danny Wright¹, Bryan Charleston⁴, Edward Okoth³, Lopez-Gil Elena⁵, Gema Lorenzo⁵, El-Behiry Ayman⁶, Naif K. Alharbi^{1,7}, Musaad A. Al-dubaib⁶, Alejandro Brun⁵, Sarah C. Gilbert¹, Vishvanath Nene³ & Adrian V. S. Hill¹

Four-segmented RVFV

Efficacy and safety of RVFV-4s

Sterile immunity, single vaccination

Wichgers Shreur *et al.*, Vaccine 2015

Overdose is safe for fetus

Major conclusions

- RVFV has affected millions of animals and tens- to hundreds of thousands of humans in single outbreaks
- RVFV has a demonstrated ability to spread across large geographical areas
- Susceptible livestock, wildlife and mosquito species are globally prevalent
- Outbreaks are difficult to predict
- Vaccines (human and veterinary) and diagnostics to control large future outbreaks are not (readily) available

Unaswered questions and unmet needs

Unanswered questions (a few of many):

- Epidemiology: Transmission and sylvatic cycle
- Immunology: Role of immune cells
- Pathogenesis: Severe cases
- Unmet needs:
 - More and better diagnostic capablility
 - Vaccine that optimally combines efficacy with safety
 - Vaccine stockpile or incentive to vaccinate (combination vaccines!)

No longer neglected...

WHO publishes list of top emerging diseases likely to cause major epidemics

WHO HQ SHOC Room WHO /Christopher Black

10 December 2015 -- A panel of scientists and public health experts convened by WHO met in Geneva this week to prioritise the top five to ten emerging pathogens likely to cause severe outbreaks in the near future, and for which few or no medical countermeasures exist. These diseases will provide the basis for work on the WHO Blueprint for R&D preparedness to help control potential future outbreaks.

The initial list of disease priorities needing urgent R&D attention comprises: Crimean Congo haemorrhagic fever, Ebola virus disease and Harburg, Lass, fever, MERS and SARS coronavirus diseases, Nipah and Rift Valley fever. The list will be reviewed annually or when new diseases energe.

Coalition for Epidemic Preparedness Innovations (CEPI)

Call for proposals (CfP) Topic: Platform technologies to enable rapid vaccine development for epidemic prone infections

Reference number: CEPI-CIP-002-platforms

http://www.zapi-imi.eu/

Acknowledgements

This research was performed as part of the Zoonoses Anticipation and Prepareoness Initiative (ZAPI project; IMI Grant Agreement n° 115760), with the assistance and financial support of IMI and the European Commission, and inkind contributions from EFPIA partners.

